التنبؤ بواسطة تقنيات التلميع هذا الموقع هو جزء من جافاسكريبت E-لابس كائنات التعلم لاتخاذ القرارات. يتم تصنيف جافا سكريبت أخرى في هذه السلسلة ضمن مجالات مختلفة من التطبيقات في قسم مينو في هذه الصفحة. سلسلة زمنية هي سلسلة من الملاحظات التي يتم ترتيبها في الوقت المناسب. ومن العناصر المتأصلة في جمع البيانات المأخوذة على مر الزمن شكل من أشكال الاختلاف العشوائي. هناك طرق للحد من إلغاء التأثير بسبب الاختلاف العشوائي. التقنيات المستخدمة على نطاق واسع هي تمهيد. وتكشف هذه التقنيات، عندما تطبق بشكل صحيح، عن الاتجاهات الكامنة بشكل أوضح. أدخل السلاسل الزمنية بالصفوف في التسلسل، بدءا من الزاوية العلوية اليسرى، والمعلمة (المعلمات)، ثم انقر على الزر حساب للحصول على التنبؤ قبل فترة واحدة. لا يتم تضمين صناديق فارغة في الحسابات ولكن الأصفار هي. في إدخال البيانات الخاصة بك للانتقال من خلية إلى خلية في مصفوفة البيانات استخدام مفتاح تاب لا السهم أو إدخال مفاتيح. ملامح السلاسل الزمنية، والتي يمكن كشفها من خلال فحص الرسم البياني. مع القيم المتوقعة، والسلوك المتبقي، والنمذجة حالة التنبؤ. المتوسطات المتحركة: تعد المتوسطات المتحركة من بين أكثر التقنيات شعبية في المعالجة المسبقة للمسلسلات الزمنية. وهي تستخدم لتصفية الضوضاء البيضاء العشوائية من البيانات، لجعل السلاسل الزمنية أكثر سلاسة أو حتى للتأكيد على بعض العناصر الإعلامية الواردة في السلاسل الزمنية. الأسي تجانس: هذا هو مخطط شعبية جدا لإنتاج سلسة سلسلة الوقت. في حين أن المتوسطات المتحركة يتم ترجيح الملاحظات السابقة بالتساوي، فإن التسييل الأسي يعين الأوزان المتناقصة بشكل كبير مع تقدم الملاحظة. وبعبارة أخرى، تعطي الملاحظات الأخيرة وزنا أكبر نسبيا في التنبؤ من الملاحظات القديمة. ضعف الأسي تجانس أفضل في التعامل مع الاتجاهات. الثلاثي الأسي تجانس أفضل في التعامل مع اتجاهات القطع المكافئ. متوسط متحرك مرجح أسي مع ثابت التمهيد a. يقابل تقريبا متوسط متحرك بسيط للطول (أي الفترة) n، حيث تكون a و n مرتبطة بما يلي: a 2 (n1) أور n (2 - a) a. وهكذا، على سبيل المثال، فإن المتوسط المتحرك المرجح ألسيا مع ثابت التمهيد يساوي 0.1 من شأنه أن يتوافق تقريبا إلى 19 المتوسط المتحرك اليوم. والمتوسط المتحرك البسيط لمدة 40 يوما من شأنه أن يتوافق تقريبا مع متوسط متحرك مرجح أسي مع ثابت ثابت يساوي 0.04878. هولتس الخطي الأسي تمهيد: لنفترض أن السلسلة الزمنية غير الموسمية ولكن لا عرض الاتجاه. طريقة هولتس تقدر كل من المستوى الحالي والاتجاه الحالي. لاحظ أن المتوسط المتحرك البسيط هو حالة خاصة للتلطيف الأسي عن طريق تحديد فترة المتوسط المتحرك إلى الجزء الصحيح من ألفا (ألفا) ألفا. بالنسبة لمعظم بيانات الأعمال تكون معلمة ألفا أصغر من 0.40 فعالة في كثير من الأحيان. ومع ذلك، يمكن للمرء إجراء بحث شبكة من مساحة المعلمة، مع 0.1 إلى 0.9، مع زيادات من 0.1. ثم أفضل ألفا لديه أصغر خطأ المطلق يعني (خطأ ما). كيفية مقارنة عدة طرق للتجانس: على الرغم من وجود مؤشرات رقمية لتقييم دقة تقنية التنبؤ، فإن النهج الأكثر انتشارا هو استخدام مقارنة مرئية لعدة تنبؤات لتقييم دقتها والاختيار من بين مختلف أساليب التنبؤ. في هذا النهج، يجب على المرء أن مؤامرة (باستخدام، على سبيل المثال إكسيل) على نفس الرسم البياني القيم الأصلية لمتغير سلسلة زمنية والقيم المتوقعة من عدة طرق التنبؤ المختلفة، مما يسهل المقارنة البصرية. قد ترغب في استخدام التوقعات السابقة من قبل تقنيات تجانس جافاسكريبت للحصول على القيم السابقة التنبؤ على أساس تقنيات تمهيد التي تستخدم معلمة واحدة فقط. هولت، وطرق الشتاء تستخدم اثنين وثلاثة معلمات، على التوالي، وبالتالي فإنه ليس من السهل مهمة لتحديد الأمثل، أو حتى بالقرب من القيم المثلى من قبل التجربة والأخطاء للمعلمات. ويؤكد التمهيد الأسي المفرد على المنظور القصير المدى الذي يحدد المستوى للمراقبة الأخيرة ويستند إلى شرط عدم وجود اتجاه. إن الانحدار الخطي، الذي يناسب خط المربعات الصغرى على البيانات التاريخية (أو البيانات التاريخية المحولة)، يمثل المدى الطويل، الذي يشترط الاتجاه الأساسي. هولتس الخطي الأسي تجانس يلتقط المعلومات حول الاتجاه الأخير. والمعلمات في نموذج هولتس هي معلمة المستويات التي ينبغي أن تنخفض عندما يكون مقدار تغير البيانات كبيرا، وينبغي زيادة معلمة الاتجاهات إذا كان اتجاه الاتجاه الأخير مدعوما بالعوامل المسببة لبعض العوامل. التنبؤ على المدى القصير: لاحظ أن كل جافاسكريبت في هذه الصفحة يوفر توقعات خطوة واحدة. للحصول على توقعات من خطوتين. ببساطة إضافة القيمة المتوقعة إلى نهاية لك البيانات سلسلة الوقت ثم انقر على نفس زر حساب. يمكنك تكرار هذه العملية لبضع مرات من أجل الحصول على التنبؤات قصيرة الأجل اللازمة. المتوسط المتوسط ونماذج التمهيد الأسي كخطوة أولى في التحرك خارج النماذج المتوسطة، نماذج المشي العشوائي، ونماذج الاتجاه الخطي، يمكن الأنماط والاتجاهات غير التقليدية استقراء باستخدام نموذج متحرك متوسط أو تمهيد. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط متغير ببطء. وبالتالي، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط هو. المتوسط المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط المحلي سوف تميل إلى التخلف عن صحيح قيمة المتوسط المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط عمر البيانات في المتوسط المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في سلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط المحلي). إذا حاولنا بدلا من ذلك متوسط متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر من تأثير متخلف: متوسط العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط متحرك لمدة 19 عاما، فإن متوسط العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط 3 المدى: نموذج C، المتوسط المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط المتحرك المرجح أضعافا) نموذج المتوسط المتحرك البسيط المذكورة أعلاه لديه الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط المتوسط المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول قيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط المتوسط المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج تمهيد أسي خطي (ليس) يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. وعادة ما يعبر عن الشكل المعياري للنموذج من هذا النموذج على النحو التالي: اسمحوا S تدل على سلسة سلسة السلسلة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y. وهذا هو، يتم إعطاء قيمة S في الفترة t من قبل: (أذكر أنه تحت بسيطة الأسفل، وهذا سيكون التنبؤ ل Y في الفترة t1.) ثم اسمحوا سكوت تدل على سلسلة مضاعفة مضاعفة التي تم الحصول عليها من خلال تطبيق التمهيد الأسي بسيطة (باستخدام نفس 945) لسلسلة S: وأخيرا، والتوقعات ل تك تك. عن أي kgt1، تعطى بواسطة: هذه الغلة e 1 0 (أي الغش قليلا، والسماح للتوقعات الأولى تساوي الملاحظة الأولى الفعلية)، و e 2 Y 2 8211 Y 1. وبعد ذلك يتم توليد التنبؤات باستخدام المعادلة أعلاه. وهذا يعطي نفس القيم المجهزة كالصيغة المستندة إلى S و S إذا كانت الأخيرة قد بدأت باستخدام S 1 S 1 Y 1. يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمية. هولت 8217s الخطي الأسي تمهيد البني 8217s نموذج ليس يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أنه يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب: المستوى والاتجاه لا يسمح لها أن تختلف بمعدلات مستقلة. ويعالج نموذج هولت 8217s ليس هذه المسألة عن طريق تضمين اثنين من الثوابت تمهيد، واحدة للمستوى واحد للاتجاه. في أي وقت t، كما هو الحال في نموذج Brown8217s، هناك تقدير ل t من المستوى المحلي وتقدير t ر للاتجاه المحلي. وهنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة للمستوى والاتجاه من خلال معادلتين تنطبقان على تمهيد أسي لها بشكل منفصل. وإذا كان المستوى المقدر والاتجاه في الوقت t-1 هما L t82091 و T t-1. على التوالي، فإن التنبؤ ب Y تشي الذي كان سيجري في الوقت t-1 يساوي L t-1 T t-1. وعند ملاحظة القيمة الفعلية، يحسب التقدير المحدث للمستوى بصورة متكررة بالاستكمال الداخلي بين Y تشي وتوقعاته L t-1 T t-1 باستعمال أوزان 945 و1-945. والتغير في المستوى المقدر، وهي L t 8209 L t82091. يمكن تفسيرها على أنها قياس صاخبة للاتجاه في الوقت t. ثم يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t 8209 L t82091 والتقدير السابق للاتجاه T t-1. وذلك باستخدام أوزان 946 و 1-946: تفسير ثابت ثابت تمهيد 946 مماثل لتلك التي من ثابت مستوى تمهيد 945. نماذج ذات قيم صغيرة من 946 نفترض أن الاتجاه يتغير ببطء شديد مع مرور الوقت، في حين أن النماذج مع أكبر 946 تفترض أنها تتغير بسرعة أكبر. ويعتقد نموذج مع كبير 946 أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة المقبلة. (العودة إلى أعلى الصفحة). ويمكن تقدير ثوابت التنعيم 945 و 946 بالطريقة المعتادة من خلال تقليل الخطأ المتوسط التربيعي للتنبؤات ذات الخطوة الأولى. عندما يتم ذلك في ستاترافيكس، وتظهر التقديرات إلى أن 945 0.3048 و 946 0.008. القيمة الصغيرة جدا 946 تعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل. وبالمقارنة مع فكرة متوسط عمر البيانات المستخدمة في تقدير المستوى المحلي للسلسلة، فإن متوسط عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1 946، وإن لم يكن يساويها بالضبط . في هذه الحالة تبين أن تكون 10.006 125. هذا هو 8217t عدد دقيق جدا بقدر دقة تقدير 946 isn8217t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حيث حجم العينة من 100، لذلك هذا النموذج هو المتوسط على مدى الكثير جدا من التاريخ في تقدير هذا الاتجاه. ويبين مخطط التنبؤ الوارد أدناه أن نموذج ليس يقدر اتجاه محلي أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج سيترند. كما أن القيمة المقدرة ل 945 تكاد تكون مطابقة لتلك التي تم الحصول عليها من خلال تركيب نموذج سيس مع أو بدون اتجاه، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت 8220eyeball8221 هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحولت إلى أسفل في نهاية السلسلة ما حدث المعلمات من هذا النموذج قد تم تقديرها من خلال تقليل الخطأ المربعة للتنبؤات 1-خطوة إلى الأمام، وليس التنبؤات على المدى الطويل، في هذه الحالة لا يوجد 8217t الاتجاه الكثير من الفرق. إذا كان كل ما كنت تبحث في 1-خطوة قبل الأخطاء، كنت لا ترى الصورة الأكبر للاتجاهات أكثر (مثلا) 10 أو 20 فترات. من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط الأساس أقصر لتقدير الاتجاه. على سبيل المثال، إذا اخترنا تعيين 946 0.1، ثم متوسط عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، وهو ما يعني أننا متوسط متوسط الاتجاه على مدى تلك الفترات 20 الماضية أو نحو ذلك. Here8217s ما مؤامرة توقعات يبدو وكأننا وضعنا 946 0.1 مع الحفاظ على 945 0.3. هذا يبدو معقولا بشكل حدسي لهذه السلسلة، على الرغم من أنه من المحتمل أن يستقضي هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إحصائيات الخطأ هنا هو مقارنة نموذج للنموذجين المبينين أعلاه وكذلك ثلاثة نماذج سيس. القيمة المثلى 945. لنموذج سيس هو تقريبا 0.3، ولكن يتم الحصول على نتائج مماثلة (مع استجابة أكثر قليلا أو أقل، على التوالي) مع 0.5 و 0.2. (A) هولتس الخطي إكس. تمهيد مع ألفا 0.3048 وبيتا 0.008 (B) هولتس الخطية إكس. تمهيد مع ألفا 0.3 و بيتا 0.1 (C) تمهيد الأسي بسيط مع ألفا 0.5 (D) تمهيد الأسي بسيطة مع ألفا 0.3 (E) بسيطة الأسي تمهيد مع ألفا 0.2 احصائياتهم متطابقة تقريبا، لذلك نحن حقا يمكن 8217t جعل الاختيار على أساس من 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات. وعلينا أن نعود إلى الاعتبارات الأخرى. إذا كنا نعتقد اعتقادا قويا أنه من المنطقي أن يستند تقدير الاتجاه الحالي على ما حدث على مدى السنوات ال 20 الماضية أو نحو ذلك، يمكننا أن نجعل من حالة لنموذج ليس مع 945 0.3 و 946 0.1. إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، فإن أحد نماذج سيس قد يكون من الأسهل تفسيره، كما سيوفر المزيد من توقعات منتصف الطريق للفترات الخمس أو العشر القادمة. (العودة إلى أعلى الصفحة). أي نوع من الاستقراء هو الأفضل: أدلة أفقية أو خطية تشير إلى أنه إذا تم تعديل البيانات (إذا لزم الأمر) للتضخم، فقد يكون من غير الحكمة استقراء الخطي القصير الأجل الاتجاهات بعيدة جدا في المستقبل. إن الاتجاهات الواضحة اليوم قد تتراجع في المستقبل بسبب أسباب متنوعة مثل تقادم المنتج، وزيادة المنافسة، والانكماش الدوري أو التحولات في صناعة ما. لهذا السبب، تجانس الأسي بسيط غالبا ما يؤدي أفضل من خارج العينة مما قد يكون من المتوقع خلاف ذلك، على الرغم من كوتنيفيكوت الاتجاه الأفقي الاستقراء. وكثيرا ما تستخدم أيضا تعديلات الاتجاه المخفف لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات الاتجاه. ويمكن تطبيق نموذج ليس المائل للاتجاه ليس كحالة خاصة لنموذج أريما، ولا سيما نموذج أريما (1،1،2). ومن الممكن حساب فترات الثقة حول التنبؤات طويلة الأجل التي تنتجها نماذج التمهيد الأسي، من خلال اعتبارها حالات خاصة لنماذج أريما. (حذار: لا تحسب جميع البرامج فترات الثقة لهذه النماذج بشكل صحيح). يعتمد عرض فترات الثقة على (1) خطأ رمز في النموذج، (2) نوع التجانس (بسيط أو خطي) (3) القيمة (ق) من ثابت ثابت (ق) و (4) عدد الفترات المقبلة كنت التنبؤ. بشكل عام، انتشرت الفترات بشكل أسرع مع 945 يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما يتم استخدام خطية بدلا من تجانس بسيط. ويناقش هذا الموضوع بمزيد من التفصيل في قسم نماذج أريما من الملاحظات. (العودة إلى أعلى الصفحة). في الممارسة العملية سوف يوفر المتوسط المتحرك تقديرا جيدا لمتوسط التسلسل الزمني إذا كان المتوسط ثابتا أو ببطء في التغير. وفي حالة المتوسط الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط الضوضاء العشوائية من التوزيع العادي مع متوسط الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط المتوسط المتحرك للمتوسط في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط المتحرك يقلل من الملاحظات نظرا لأن المتوسط يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط المتحرك. التحيز عندما يكون المتوسط يزداد سلبيا. أما بالنسبة للمتوسط المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط المتوسط المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط التقدير المتحرك إلى افتراض متوسط ثابت، والمثال له اتجاه خطي في المتوسط خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط المتحرك البالغ 5 من المتوسط المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط الانحراف (ماد) في الخلايين E6 و E7 على التوالي.
No comments:
Post a Comment